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(11) Structure 7 is preferred rather than the isomeric iii on the basis of 1H and 
13C NMR and mass spectral fragmentation. The 13C NMR assignment is 
as shown below: 
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Sequential Two Photon Photoredox Chemistry of 
Transition Metal Compounds. Nonlinear Intensity 
Effects in Photochemistry of the Reineckate Ion1 

Sir: 

Two photon photochemical effects appear to play a major 
role in the photochemistry of chlorophyll.2 Two photon pro­
cesses have been investigated in the luminescence of some dye 
molecules,3 in the spectroscopy of a variety of substrates,4,5 and 
in gas phase photochemical studies.6 There have been few 
systematic investigations of two photon photochemical pro­
cesses with condensed phase substrates.7-9 

The reineckate ion, Cr (NH 3 ) 2 (NCS) 4
- , has become an 

important chemical actinometer for visible radiation.10 The 
use of the reineckate ion as a chemical actinometer depends 
upon the photoaquation of N C S - (eq 1). However, near-ul­
traviolet excitations of Cr (NHs) 2 (NCS) 4

- do lead to the 
formation of (NCS) 2

- and Cr2 + in small yields (<£ ~ 1O-3) (eq 
2).11 '12 Thus using Co(NH 3 ) 5F 2 + (7 X 1O-3 M) to scavenge 
for Cr2 + (eq 3)13"15 we find that 0Co2+ = 3.4 X 1(T3 for 
337-nm irradiations (xenon lamp with cut-off filter and mo-
nochromator) and 7.7 X 10~3 for 254-nm excitations (low 
pressure mercury lamp). In these same experiments, we found 
the quantum yields for N C S - aquation to be 0.25 and 0.30,15'16 

respectively. 

Cr (NHa) 2 (NCS) 4
- + hv 

— ^ C r ( N H a ) 2 ( N C S ) 3 ( O H 2 ) + N C S - (1) 
H 2 O 

Cr(NH 3 ) 2 (NCS) 4
- + hv 

—>- Cr2+ + 2NH 4
+ + ( N C S ) 2

- + 2 N C S - (2) 

Cr2 + + Co(NH 3 ) 5 F 2 + 

* 3 
CrF 2 + + 5NH 4

+ + Co 2 + (3) 

While investigating the suitability of the reineckate ion as 
an actinometric reference for visible-near-UV laser and dye 
laser systems, we have found that both these product yields 
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Figure 1. Variations of product quantum yields for redox (upper curve) 
and for N C S - aquation (lower curve) with intensity during the 337-nm 
laser photolysis of trans-CT(NH3)2(T^CS)4~ in the presence of Co-
(NH3) sF

2+in0.01 MHClO4. 

increase for 337-nm pulsed nitrogen laser excitations (1 MW, 
10-ns pulse width). For example, at the highest power levels17 

we found 0 N C S - — 0-5 and 0Co2+ — 0.015.18 Under these 
conditions both 0NCS and 0co2+ are intensity dependent, the 
former decreasing with / a and the latter increasing with / a 

(Figure 1). For moderate intensities 0Co2+ is proportional to 
/a, but at the highest power levels 0Co2+ approaches an intensity 
independent limit (Figure 1). This is suggestive of a "satura­
tion" effect of the sort expected when the 2E concentration is 
significantly depleted by the absorption of a second photon and 
the accompanying photoredox processes. Such a "saturation" 
effect could only be important when the rate of excited-state 
light absorption becomes equal to or greater than the normal 
rate of excited state decay. 

If we take the N C S " aquation process to be a characteristic 
reaction of quartet ligand field excited states,19 2i then the 
laser induced processes may be described by eq 4-11 and 

Cr(NH3J2(NCS)4- + hv • 4CT* (4) 

4CT* 
0o 

— Q* (5) 

Cr2+ + 2 NH 4
+ + (NCS)2" + 2NCS - (6) 

Q* Q0 + heat 

Q„ 

*E + hv 

Qo-

0'a 
Cr2+ + (NCS) 2

- + 2NCS" 2NH4 

-i°~. Cr(NH3MNCS)3OH2 + NCS" 

- ^ C r ( N H j ) 2 ( N C S ) 4 " +heat 

0Cr2+ = 

''NCS-

1 + P1ED1O5TD 

1 + 0'eD/oSrD 

(7) 

(8) 

(9) 

(10) 

( U ) 

(12) 

(13) 

Figure 2 where Q* designates ligand field states of quartet spin 
multiplicity, and Q0 the thermalized state of the quartet 
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Cr(NH3I2(NCS)3OH2 + NCS 

Figure 2. Schematic representation of photochemical and photophysical 
processes in //•a«i-Cr(NH3)2(NCS)4~. The excited quartet ligand field 
states, Q2, Qi, etc., are represented by Q* in the text while the thermalized 
states in the ligand field quartet manifold are indicated by Qo- Photoa-
quation is regarded as a reaction characteristic of populations of ligand 
field excited states (Q2, Qi, Qo, 2E, etc.)- Vibrational and internal con­
version processes are indicated by wavy lines (kv and k\\). The absorption 
of the 2E state is indicated by 2CT. Other terms are defined in the text. 

manifold. The Qo -» 2E intersystem crossing rate has been 
reported to be very rapid (kg > 5 X 10" s -1)22 and it is com­
monly held that a substantial portion of the ligand field pho­
tochemistry arises from 2E —• Qo back-intersystem cross­
ing.19-21 If this model be adopted, then our results are consis­
tent with an equilibrium between the doublet and quartet 
states; our results do not require that the Qo and 2E states be 
distinguishable. In the absence of the absorption of a second 
photon, the doublet lifetime is TQ = \/(k\o + k\ \) and an ap­
proximate stationary state treatment23 of eq 4-11 results in 
analytic expressions (eq 12 13), which are consistent with the 
observed two photon effects (in obtaining eq 12 and 13 we have 
assumed that /p « </>', and /a ' ^ C D ^ [ 2 E ] where eo is the 
molar absorptivity of 2E at 337 nm and 8 is a geometrical 
factor; 4>0 corresponds to the small intensity independent Cr2+ 

yield). For example a plot of l/0co
2+ vs. l//n is reasonably 

linear. 

_ (p'tpIpSTQ 

0Cr2+-7——,—T^—+0o (12) 

, k]QTD 

0NCS- - , —. (13) 
1 + 0 tDI0dTD 

Equation 12 predicts a rather straightforward dependence 
of the yield of the two photon process, 0cr2+> on the excited-
state lifetime, rp. We have found that TO may be varied over 
about an order of magnitude (from ~2 X 10 -8 s to 2 X 10-7 

s) increasing with increases in the percentage of acetone in 
aqueous solutions. Consistent with eq 12 plots of l/0co2+ vs. 
1/TD/O result in a single straight line for 0 M < [acetone] < 
5 M and about a 10-fold range of TO-

There are several striking features of this study. (1) The 
values of 0Cr2+ (proportional to 0Co2+; solubility and absorb-
ance problems do not permit us to scavenge all the Cr2+; so 
0Co2+ < 0Cr2+15) at all pulsed laser intensities are larger than 
the yields for either 337- or 254-nm continuous irradiations. 

(2) The values of 0NCS- resulting from laser excitations are 
also greater than values obtained from continuous irradiations, 
but 0NCS- decreases with /0 in contrast to the intensity de­
pendence of 0Co2+ and consistent with bleaching of the pho­
toactive ligand field excited state. (3) The two photon effect 
appears to approach saturation of the redox yield at very high 
/0. (4) The saturation effect is achieved at lower power levels 
as the excited state lifetime is increased. 

Laser photolyses were performed with a Molektron UVlOOO 
using a quartz focussing lens and Ealing neutral density filters. 
Lifetime measurements were performed with a frequency 
doubled, ruby flash photolysis system.24 Chemical analyses 
for Co2+ 25 and NCS - 9 were performed according to the lit­
erature methods. 
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